Asymptotic Isoperimetry of Balls in Metric Measure Spaces

نویسنده

  • ROMAIN TESSERA
چکیده

In this paper, we study the asymptotic behavior of the volume of spheres in metric measure spaces. We first introduce a general setting adapted to the study of asymptotic isoperimetry in a general class of metric measure spaces. Let A be a family of subsets of a metric measure space (X, d, μ), with finite, unbounded volume. For t > 0, we define: I ↓ A(t) = inf A∈A,μ(A)≥t μ(∂A). We say that A is asymptotically isoperimetric if ∀t > 0: I ↓ A(t) ≤ CI(t), where I is the profile of X. We show that there exist graphs with uniform polynomial growth whose balls are not asymptotically isoperimetric and we discuss the stability of related properties under quasi-isometries. Finally, we study the asymptotically isoperimetric properties of connected subsets in a metric measure space. In particular, we build graphs with uniform polynomial growth whose connected subsets are not asymptotically isoperimetric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FORMAL BALLS IN FUZZY PARTIAL METRIC SPACES

In this paper, the poset $BX$ of formal balls is studied in fuzzy partial metric space $(X,p,*)$. We introduce the notion of layered complete fuzzy partial metric space and get that the poset $BX$ of formal balls is a dcpo if and only if $(X,p,*)$ is layered complete fuzzy partial metric space.

متن کامل

$G$-asymptotic contractions in metric spaces with a graph and fixed point results

In this paper, we discuss the existence and uniqueness of fixed points for $G$-asymptotic contractions in metric spaces endowed with a graph. The result given here is a new version of Kirk's fixed point theorem for asymptotic contractions in metric spaces endowed with a graph. The given result here is a generalization of fixed point theorem for asymptotic contraction from metric s paces to metr...

متن کامل

Geodesic metric spaces and generalized nonexpansive multivalued mappings

In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...

متن کامل

Best proximity point theorems in Hadamard spaces using relatively asymptotic center

In this article we survey the existence of best proximity points for a class of non-self mappings which‎ satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [‎A‎. ‎Abkar‎, ‎M‎. ‎Gabeleh‎, Best proximity points of non-self mappings‎, ‎Top‎, ‎21, (2013)‎, ‎287-295]‎ which guarantees the existence of best proximity points for nonex...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005